The biology of the extracorporeal vasculature of Botryllus schlosseri

TitleThe biology of the extracorporeal vasculature of Botryllus schlosseri
Publication TypeJournal Article
Year of Publication2018
AuthorsRodriguez D, Nourizadeh S, De Tomaso AW
JournalDevelopmental Biology
ISSN0012-1606
KeywordsAngiogenesis, Extracorporeal-vasculature, Invertebrate-vasculature, Parabiosis, Vascular regeneration, Vascular regression
Abstract

The extracorporeal vasculature of the colonial ascidian Botryllus schlosseri plays a key role in several biological processes: transporting blood, angiogenesis, regeneration, self-nonself recognition, and parabiosis. The vasculature also interconnects all individuals in a colony and is composed of a single layer of ectodermally-derived cells. These cells form a tube with the basal lamina facing the lumen, and the apical side facing an extracellular matrix that consists of cellulose and other proteins, known as the tunic. Vascular tissue is transparent and can cover several square centimeters, which is much larger than any single individual within the colony. It forms a network that ramifies and expands to the perimeter of each colony and terminates into oval-shaped protrusions known as ampullae. Botryllus individuals replace themselves through a weekly budding cycle, and vasculature is added to ensure the interconnection of each new individual, thus there is continuous angiogenesis occurring naturally. The vascular tissue itself is highly regenerative; surgical removal of the ampullae and peripheral vasculature triggers regrowth within 24–48 h, which includes forming new ampullae. When two individuals, whether in the wild or in the lab, come into close contact and their ampullae touch, they can either undergo parabiosis through anastomosing vessels, or reject vascular fusion. The vasculature is easily manipulated by direct means such as microinjections, microsurgeries, and pharmacological reagents. Its transparent nature allows for in vivo analysis by bright field and fluorescence microscopy. Here we review the techniques and approaches developed to study the different biological processes that involve the extracorporeal vasculature.

URLhttp://www.sciencedirect.com/science/article/pii/S0012160617309168
DOI10.1016/j.ydbio.2018.10.013